Heparin-Superparamagnetic Iron Oxide Nanoparticles for Theranostic Applications

Molecules. 2022 Oct 21;27(20):7116. doi: 10.3390/molecules27207116.

Abstract

In this study, superparamagnetic iron oxide nanoparticles (SPIONs) were engineered with an organic coating composed of low molecular weight heparin (LMWH) and bovine serum albumin (BSA), providing heparin-based nanoparticle systems (LMWH@SPIONs). The purpose was to merge the properties of the heparin skeleton and an inorganic core to build up a targeted theranostic nanosystem, which was eventually enhanced by loading a chemotherapeutic agent. Iron oxide cores were prepared via the co-precipitation of iron salts in an alkaline environment and oleic acid (OA) capping. Dopamine (DA) was covalently linked to BSA and LMWH by amide linkages via carbodiimide coupling. The following ligand exchange reaction between the DA-BSA/DA-LMWH and OA was conducted in a biphasic system composed of water and hexane, affording LMWH@SPIONs stabilized in water by polystyrene sulfonate (PSS). Their size and morphology were investigated via dynamic light scattering (DLS) and transmission electron microscopy (TEM), respectively. The LMWH@SPIONs' cytotoxicity was tested, showing marginal or no toxicity for samples prepared with PSS at concentrations of 50 µg/mL. Their inhibitory activity on the heparanase enzyme was measured, showing an effective inhibition at concentrations comparable to G4000 (N-desulfo-N-acetyl heparin, a non-anticoagulant and antiheparanase heparin derivative; Roneparstat). The LMWH@SPION encapsulation of paclitaxel (PTX) enhanced the antitumor effect of this chemotherapeutic on breast cancer cells, likely due to an improved internalization of the nanoformulated drug with respect to the free molecule. Lastly, time-domain NMR (TD-NMR) experiments were conducted on LMWH@SPIONs obtaining relaxivity values within the same order of magnitude as currently used commercial contrast agents.

Keywords: dopamine; heparanase; heparin; metastasis; paclitaxel; superparamagnetic iron oxide nanoparticles (SPION); theranostic; toxicity.

MeSH terms

  • Amides
  • Carbodiimides
  • Contrast Media
  • Dopamine
  • Ferric Compounds / chemistry
  • Heparin
  • Heparin, Low-Molecular-Weight / pharmacology
  • Hexanes
  • Iron
  • Ligands
  • Magnetic Iron Oxide Nanoparticles
  • Magnetite Nanoparticles* / chemistry
  • Nanoparticles* / chemistry
  • Oleic Acid
  • Paclitaxel
  • Precision Medicine
  • Salts
  • Serum Albumin, Bovine
  • Water

Substances

  • Magnetite Nanoparticles
  • Serum Albumin, Bovine
  • Hexanes
  • Contrast Media
  • Oleic Acid
  • Ligands
  • Heparin, Low-Molecular-Weight
  • Dopamine
  • Salts
  • Ferric Compounds
  • Heparin
  • Paclitaxel
  • Iron
  • Water
  • Carbodiimides
  • Amides

Grants and funding

M.M. thanks the support from the Italian Ministry of University and Research (MIUR) through the Dipartimenti di Eccellenza 2019 grant.