Modulating the Inclusive and Coordinating Ability of Thiacalix[4]arene and Its Antenna Effect on Yb3-Luminescence via Upper-Rim Substitution

Molecules. 2022 Oct 11;27(20):6793. doi: 10.3390/molecules27206793.

Abstract

The present work introduces the series of thiacalix[4]arenes (H4L) bearing different upper-rim substituents (R = H, Br, NO2) for rational design of ligands providing an antenna-effect on the NIR Yb3+-centered luminescence of their Yb3+ complexes. The unusual inclusive self-assembly of H3L- (Br) through Brπ interactions is revealed through single-crystal XRD analysis. Thermodynamically favorable formation of dimeric complexes [2Yb3+:2HL3-] leads to efficient sensitizing of the Yb3+ luminescence for H4L (Br, NO2), while poor sensitizing is observed for ligand H4L (H). X-ray analysis of the single crystal separated from the basified DMF solutions of YbCl3 and H4L(NO2) has revealed the transformation of the dimeric complexes into [4Yb3+:2L4-] ones with a cubane-like cluster structure. The luminescence characteristics of the complexes in the solutions reveal the peculiar antenna effect of H4L(R = NO2), where the triplet level at 567 nm (17,637 cm-1) arisen from ILCT provides efficient sensitizing of the Yb3+ luminescence.

Keywords: X-ray analysis; Yb3+ complexes; calix[4]arenes; halogen-bonding; luminescence.