A Low-Cost Flexible Perforated Respiratory Sensor Based on Platinum for Continuous Respiratory Monitoring

Micromachines (Basel). 2022 Oct 14;13(10):1743. doi: 10.3390/mi13101743.

Abstract

Monitoring sleep conditions is of importance for sleep quality evaluation and sleep disease diagnosis. Accurate respiration detection provides key information about sleep conditions. Here, we propose a perforated temperature sensor that can be worn below the nasal cavity to monitor breath. The sensing system consists of two perforated temperature sensors, signal conditioning circuits, a transmission module, and a supporting analysis algorithm. The perforated structure effectively enhances the sensitivity of the system and shortens the response time. The sensor's response time is 0.07 s in air and sensitivity is 1.4‱°C-1. The device can achieve a monitoring respiratory temperature range between normal room temperature and 40 °C. The simple and standard micromachining process ensures low cost and high reproducibility. We achieved the monitoring of different breathing patterns, such as normal breathing, panting, and apnea, which can be applied to sleep breath monitoring and exercise information recording.

Keywords: respiratory sensor; sleep monitoring; temperature; wearable device.