Reliability Evaluation Based on Mathematical Degradation Model for Vacuum Packaged MEMS Sensor

Micromachines (Basel). 2022 Oct 11;13(10):1713. doi: 10.3390/mi13101713.

Abstract

Vacuum packaging is used extensively in MEMS sensors for improving performance. However, the vacuum in the MEMS chamber gradually degenerates over time, which adversely affects the long-term performance of the MEMS sensor. A mathematical model for vacuum degradation is presented in this article for evaluating the degradation of vacuum packaged MEMS sensors, and a temperature-accelerated test of MEMS gyroscope with different vacuums is performed. A mathematical degradation model is developed to fit the parameters of the degradation of Q-factor over time at three different temperatures. The results indicate that the outgassing rate at 85 °C is the highest, which is 0.0531 cm2/s; the outgassing rate at 105 °C is the lowest, which is 0.0109 cm2/s; and the outgassing rate at 125 °C is in the middle, which is 0.0373 cm2/s. Due to the different mechanisms by which gas was released, the rate of degradation did not follow this rule. It will also be possible to predict the long-term reliability of vacuum packaged MEMS sensors at room temperature based on this model.

Keywords: MEMS sensor; mathematical model; reliability evaluation; vacuum degradation.