Extrusion-Based 3D Printing of Stretchable Electronic Coating for Condition Monitoring of Suction Cups

Micromachines (Basel). 2022 Sep 27;13(10):1606. doi: 10.3390/mi13101606.

Abstract

Suction cups (SCs) are used extensively by the industrial sector, particularly for a wide variety of automated material-handling applications. To enhance productivity and reduce maintenance costs, an online supervision system is essential to check the status of SCs. This paper thus proposes an innovative method for condition monitoring of SCs coated with printed electronics whose electrical resistance is supposed to be correlated with the mechanical strain. A simulation model is first examined to observe the deformation of SCs under vacuum compression, which is needed for the development of sensor coating thanks to the 3D printing process. The proposed design involves three circle-shaped sensors, two for the top and bottom bellows (whose mechanical strains are revealed to be the most significant), and one for the lip (small strain, but important stress that might provoke wear and tear in the long term). For the sake of simplicity, practical measurement is performed on 2D samples coated with two different conductive inks subjected to unidirectional tensile loading. Graphical representations together with analytical models of both linear and nonlinear piezoresistive responses allows for the characterization of the inks' behavior under several conditions of displacement and speed inputs. After a comparison of the two inks, the most appropriate is selected as a consequence of its excellent adhesion and stretchability, which are essential criteria to meet the target field. Room temperature extrusion-based 3D printing is then investigated using a motorized 3D Hyrel printer with a syringe-extrusion modular system. Design optimization is finally carried out to enhance the surface detection of sensitive elements while minimizing the effect of electrodes. Although several issues still need to be further considered to match specifications imposed by our industrial partner, the achievement of this work is meaningful and could pave the way for a new generation of SCs integrated with smart sensing devices. The 3D printing of conductive ink directly on the cup's curving surface is a true challenge, which has been demonstrated, for the first time, to be technically feasible throughout the additive manufacturing (AM) process.

Keywords: 3D printing additive manufacturing; condition monitoring; conductive coating; design optimization; ink characterization; piezoresistive sensor; printed electronics.

Grants and funding

This work was principally financed by an industrial partner whose name is not disclosed for confidential purposes. The project was also partially supported by the Institute Carnot I@L–BRASS project.