Negative Magnetoresistivity in Highly Doped n-Type GaN

Materials (Basel). 2022 Oct 11;15(20):7069. doi: 10.3390/ma15207069.

Abstract

This paper presents low-temperature measurements of magnetoresistivity in heavily doped n-type GaN grown by basic GaN growth technologies: molecular beam epitaxy, metal-organic vapor phase epitaxy, halide vapor phase epitaxy and ammonothermal. Additionally, GaN crystallized by High Nitrogen Pressure Solution method was also examined. It was found that all the samples under study exhibited negative magnetoresistivity at a low temperature (10 K < T < 50 K) and for some samples this effect was observed up to 100 K. This negative magnetoresistivity effect is analyzed in the frame of the weak localization phenomena in the case of three-dimensional electron gas in a highly doped semiconductor. This analysis allows for determining the phasing coherence time τφ for heavily doped n-type GaN. The obtained τφ value is proportional to T−1.34, indicating that the electron−electron interaction is the main dephasing mechanism for the free carriers.

Keywords: GaN; magnetoresistivity; phasing coherence time; weak localization.