Tapping into Plant-Microbiome Interactions through the Lens of Multi-Omics Techniques

Cells. 2022 Oct 17;11(20):3254. doi: 10.3390/cells11203254.

Abstract

This review highlights the pivotal role of root exudates in the rhizosphere, especially the interactions between plants and microbes and between plants and plants. Root exudates determine soil nutrient mobilization, plant nutritional status, and the communication of plant roots with microbes. Root exudates contain diverse specialized signaling metabolites (primary and secondary). The spatial behavior of these metabolites around the root zone strongly influences rhizosphere microorganisms through an intimate compatible interaction, thereby regulating complex biological and ecological mechanisms. In this context, we reviewed the current understanding of the biological phenomenon of allelopathy, which is mediated by phytotoxic compounds (called allelochemicals) released by plants into the soil that affect the growth, survival, development, ecological infestation, and intensification of other plant species and microbes in natural communities or agricultural systems. Advances in next-generation sequencing (NGS), such as metagenomics and metatranscriptomics, have opened the possibility of better understanding the effects of secreted metabolites on the composition and activity of root-associated microbial communities. Nevertheless, understanding the role of secretory metabolites in microbiome manipulation can assist in designing next-generation microbial inoculants for targeted disease mitigation and improved plant growth using the synthetic microbial communities (SynComs) tool. Besides a discussion on different approaches, we highlighted the advantages of conjugation of metabolomic approaches with genetic design (metabolite-based genome-wide association studies) in dissecting metabolome diversity and understanding the genetic components of metabolite accumulation. Recent advances in the field of metabolomics have expedited comprehensive and rapid profiling and discovery of novel bioactive compounds in root exudates. In this context, we discussed the expanding array of metabolomics platforms for metabolome profiling and their integration with multivariate data analysis, which is crucial to explore the biosynthesis pathway, as well as the regulation of associated pathways at the gene, transcript, and protein levels, and finally their role in determining and shaping the rhizomicrobiome.

Keywords: allelopathy; ecology; metabolomics; metagenomics; metatranscriptomics; plant microbiome; plant–microbe interactions; primary metabolites; rhizosphere; root exudates; secondary metabolites; sustainable agriculture.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Genome-Wide Association Study
  • Microbiota*
  • Pheromones / metabolism
  • Plant Roots* / metabolism
  • Plants / metabolism
  • Soil / chemistry

Substances

  • Soil
  • Pheromones

Grants and funding

This research received no external funding.