In Situ Growth Intercalation Structure MXene@Anatase/Rutile TiO2 Ternary Heterojunction with Excellent Phosphoprotein Detection in Sweat

Biosensors (Basel). 2022 Oct 12;12(10):865. doi: 10.3390/bios12100865.

Abstract

Abnormal protein phosphorylation may relate to diseases such as Alzheimer's, schizophrenia, and Parkinson's. Therefore, the real-time detection of phosphoproteins in sweat was of great significance for the early knowledge, detection, and treatment of neurological diseases. In this work, anatase/rutile TiO2 was in situ grown on the MXene surface to constructing the intercalation structure MXene@anatase/rutile TiO2 ternary heterostructure as a sensing platform for detecting phosphoprotein in sweat. Here, the intercalation structure of MXene acted as electron and diffusion channels for phosphoproteins. The in situ grown anatase/rutile TiO2 with n-n-type heterostructure provided specific adsorption sites for the phosphoproteins. The determination of phosphoprotein covered concentrations in sweat, with linear range from 0.01 to 1 mg/mL, along with a low LOD of 1.52 μM. It is worth noting that, since the macromolecular phosphoprotein was adsorbed on the surface of the material, the electrochemical signal gradually decreased with the increase of phosphoprotein concentration. In addition, the active sites in the MXene@anatase/rutile TiO2 ternary heterojunction and synergistic effect of the heterojunction were verified by first-principle calculations to further realize the response to phosphoproteins. Additionally, the effective diffusion capacity and mobility of phosphoprotein molecules in the ternary heterojunction structure were studied by molecular dynamics simulation. Furthermore, the constructed sensing platform showed high selectivity, repeatability, reproducibility, and stability, and this newly developed sensor can detect for phosphoprotein in actual sweat samples. This satisfactory sensing strategy could be promoted to realize the noninvasive and continuous detection of sweat.

Keywords: MXene; anatae/rutile TiO2; healthcare monitoring; intercalation structure; phosphoprotein; sweat.

MeSH terms

  • Phosphoproteins*
  • Reproducibility of Results
  • Sweat*
  • Titanium / chemistry

Substances

  • titanium dioxide
  • Phosphoproteins
  • Titanium