Exogenously-Sourced Salicylic Acid Imparts Resilience towards Arsenic Stress by Modulating Photosynthesis, Antioxidant Potential and Arsenic Sequestration in Brassica napus Plants

Antioxidants (Basel). 2022 Oct 11;11(10):2010. doi: 10.3390/antiox11102010.

Abstract

In the current study, salicylic acid (SA) assesses the physiological and biochemical responses in overcoming the potential deleterious impacts of arsenic (As) on Brassica napus cultivar Neelam. The toxicity caused by As significantly reduced the observed growth and photosynthetic attributes and accelerated the reactive oxygen species (ROS). Plants subjected to As stress revealed a significant (p ≤ 0.05) reduction in the plant growth and photosynthetic parameters, which accounts for decreased carbon (C) and sulfur (S) assimilation. Foliar spray of SA lowered the oxidative burden in terms of hydrogen peroxide (H2O2), superoxide anion (O2•-), and lipid peroxidation in As-affected plants. Application of SA in two levels (250 and 500 mM) protected the Brassica napus cultivar from As stress by enhancing the antioxidant capacity of the plant by lowering oxidative stress. Among the two doses, 500 mM SA was most effective in mitigating the adverse effects of As on the Brassica napus cultivar. It was found that SA application to the Brassica napus cultivar alleviated the stress by lowering the accumulation of As in roots and leaves due to the participation of metal chelators like phytochelatins, enhancing the S-assimilatory pathway, carbohydrate metabolism, higher cell viability in roots, activity of ribulose 1, 5-bisphosphate carboxylase (Rubisco), and proline metabolism through the active participation of γ-glutamyl kinase (GK) and proline oxidase (PROX) enzyme. The current study shows that SA has the capability to enhance the growth and productivity of B. napus plants cultivated in agricultural soil polluted with As and perhaps other heavy metals.

Keywords: Rubisco; antioxidants; cell viability; chlorophyll; metal stress; oxidative stress; stomatal movements; sulfur-assimilation.

Grants and funding

This research received no external funding.