Ultrafast PCR Detection of COVID-19 by Using a Microfluidic Chip-Based System

Bioengineering (Basel). 2022 Oct 13;9(10):548. doi: 10.3390/bioengineering9100548.

Abstract

With the evolution of the pandemic caused by the Coronavirus disease of 2019 (COVID-19), reverse transcriptase-polymerase chain reactions (RT-PCR) have invariably been a golden standard in clinical diagnosis. Nevertheless, the traditional polymerase chain reaction (PCR) is not feasible for field application due to its drawbacks, such as time-consuming and laboratory-based dependence. To overcome these challenges, a microchip-based ultrafast PCR system called SWM-02 was proposed to make PCR assay in a rapid, portable, and low-cost strategy. This novel platform can perform 6-sample detection per run using multiple fluorescent channels and complete an ultrafast COVID-19 RT-PCR test within 40 min. Here, we evaluated the performance of the microdevice using the gradient-diluted COVID-19 reference samples and commercial PCR kit and determined its limit-of-detection (LoD) as 500 copies/mL, whose variation coefficients for the nucleocapsid (N) gene and open reading frame 1 ab region (ORF1ab) gene are 1.427% and 0.7872%, respectively. The system also revealed an excellent linear correlation between cycle threshold (Ct) values and dilution factors (R2 > 0.99). Additionally, we successfully detected the target RNAs and internal gene in the clinical samples by fast PCR, which shows strong consistency with conventional PCR protocol. Hence, with compact dimension, user-friendly design, and fast processing time, SWM-02 has the capability of offering timely and sensitive on-site molecular diagnosis for prevention and control of pathogen transmission.

Keywords: COVID-19; microchip-based system; microfluidics; point-of-care test; polymerase chain reaction.