Model of Acute Liver Failure in an Isolated Perfused Porcine Liver-Challenges and Lessons Learned

Biomedicines. 2022 Oct 6;10(10):2496. doi: 10.3390/biomedicines10102496.

Abstract

Acute liver failure (ALF) is a rare but devastating disease associated with substantial morbidity and a mortality rate of almost 45%. Medical treatments, apart from supportive care, are limited and liver transplantation may be the only rescue option. Large animal models, which most closely represent human disease, can be logistically and technically cumbersome, expensive and pose ethical challenges. The development of isolated organ perfusion technologies, originally intended for preservation before transplantation, offers a new platform for experimental models of liver disease, such as ALF. In this study, female domestic swine underwent hepatectomy, followed by perfusion of the isolated liver on a normothermic machine perfusion device. Five control livers were perfused for 24 h at 37 °C, while receiving supplemental oxygen and nutrition. Six livers received toxic doses of acetaminophen given over 12 h, titrated to methemoglobin levels. Perfusate was sampled every 4 h for measurement of biochemical markers of injury (e.g., aspartate aminotransferase [AST], alanine aminotransferase [ALT]). Liver biopsies were taken at the beginning, middle, and end of perfusion for histological assessment. Acetaminophen-treated livers received a median dose of 8.93 g (8.21-9.75 g) of acetaminophen, achieving a peak acetaminophen level of 3780 µmol/L (3189-3913 µmol/L). Peak values of ALT (76 vs. 105 U/L; p = 0.429) and AST (3576 vs. 4712 U/L; p = 0.429) were not significantly different between groups. However, by the end of perfusion, histology scores were significantly worse in the acetaminophen treated group (p = 0.016). All acetaminophen treated livers developed significant methemoglobinemia, with a peak methemoglobin level of 19.3%, compared to 2.0% for control livers (p = 0.004). The development of a model of ALF in the ex vivo setting was confounded by the development of toxic methemoglobinemia. Further attempts using alternative agents or dosing strategies may be warranted to explore this setting as a model of liver disease.

Keywords: acetaminophen; acute liver failure; carbon tetrachloride; ex situ machine perfusion; porcine model.