The fate of microplastics in estuary: A quantitative simulation approach

Water Res. 2022 Nov 1:226:119281. doi: 10.1016/j.watres.2022.119281. Epub 2022 Oct 20.

Abstract

Microplastics pollution is an emerging environmental concern. However, there are almost no MPs numerical simulation studies in the Yangtze Estuary which is considered as the largest plastic export in the world and quantitative simulation is not carried out in the existing models. Therefore, completing quantitative simulation and exploring different patterns of MPs transport are the main objectives of this study. In addition, the concentration distribution and risk of MPs are also analyzed. Mass-Number method is proposed to quantitatively simulate microplastics concentration in Feb. and May with errors of less than 18%. Compared with sediment flocculation and settling transport, independent floating transport is more susceptible to surface currents resulting in increased beaching and more inhomogeneous concentration distribution. Meanwhile, under the influence of current, local topography and salt wedge, the MPs perform linear motion and clockwise spiral motion inside and outside the estuary and rapidly form a "hot spot" on the southeastern part of Chongming Island and 57% to 90% of MPs are beached or settled inside the estuary, especially on the north shore. Therefore, MPs risk in some sensitive targets should be concerned according to risk assessment results. Our results break the space-time limit and explore the fate of MPs in the Yangtze Estuary and provide new idea and concern of MPs numerical simulation.

Keywords: Microplastics; Pollution risk; Quantitative simulation; Transport patterns.

MeSH terms

  • Environmental Monitoring / methods
  • Estuaries
  • Geologic Sediments
  • Microplastics*
  • Plastics
  • Water Pollutants, Chemical* / analysis

Substances

  • Microplastics
  • Plastics
  • Water Pollutants, Chemical