The Effect of Plasmodium falciparum (Welch) (Haemospororida: Plasmodiidae) Infection on the Susceptibility of Anopheles gambiae s.l. and Anopheles funestus (Diptera: Culicidae) to Pyrethroid Insecticides in the North-Western and South-Eastern, Tanzania

J Med Entomol. 2023 Jan 12;60(1):112-121. doi: 10.1093/jme/tjac163.

Abstract

The rapid development of insecticide resistance in malaria vectors threatens insecticide-based interventions. It is hypothesized that infection of insecticide-resistant vectors with Plasmodium parasites increases their vulnerability to insecticides, thus assuring the effectiveness of insecticide-based strategies for malaria control. Nonetheless, there is limited field data to support this. We investigated the effect of the Plasmodium falciparum infection on the susceptibility of Anopheles gambiae s.l. and Anopheles funestus to pyrethroids in south-eastern (Kilombero) and north-western (Muleba), Tanzania. The wild-collected mosquitoes were tested against 0.05% deltamethrin and 0.75% permethrin, then assessed for sporozoite rate and resistant gene (kdr) mutations. All Anopheles gambiae s.l. from Kilombero were An. arabiensis (Patton, 1905) while those from Muleba were 87% An. gambiae s.s (Giles, 1902) and 13% An. Arabiensis. High levels of pyrethroid resistance were observed in both areas studied. The kdr mutation was only detected in An. gambiae s.s. at the frequency of 100% in survivors and 97% in dead mosquitoes. The P. falciparum sporozoite rates were slightly higher in susceptible than in resistant mosquitoes. In Muleba, sporozoite rates in An. gambiae s.l. were 8.1% and 6.4% in dead mosquitoes and survivors, respectively (SRR = 1.28, p = 0.19). The sporozoite rates in Kilombero were 1.3% and 0.7% in the dead and survived mosquitoes, respectively (sporozoite rate ratio (SRR) = 1.9, p = 0.33). In An. funestus group sporozoite rates were 6.2% and 4.4% in dead and survived mosquitoes, respectively (SRR = 1.4, p = 0.54). These findings indicate that insecticides might still be effective in malaria control despite the rapid development of insecticide resistance in malaria vectors.

Keywords: Plasmodium falciparum; kdr mutation; Malaria vector; Sporozoite; insecticide resistance.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Anopheles*
  • Insecticide Resistance / genetics
  • Insecticides* / pharmacology
  • Malaria*
  • Malaria, Falciparum*
  • Mosquito Vectors
  • Plasmodium falciparum
  • Pyrethrins* / pharmacology
  • Tanzania

Substances

  • Insecticides
  • Pyrethrins