Free Energy Calculations Using the Movable Type Method with Molecular Dynamics Driven Protein-Ligand Sampling

J Chem Inf Model. 2022 Nov 28;62(22):5645-5665. doi: 10.1021/acs.jcim.2c00278. Epub 2022 Oct 25.

Abstract

Fast and accurate biomolecular free energy estimation has been a significant interest for decades, and with recent advances in computer hardware, interest in new method development in this field has even grown. Thorough configurational state sampling using molecular dynamics (MD) simulations has long been applied to the estimation of the free energy change corresponding to the receptor-ligand complexing process. However, performing large-scale simulation is still a computational burden for the high-throughput hit screening. Among molecular modeling tools, docking and scoring methods are widely used during the early stages of the drug discovery process in that they can rapidly generate discrete receptor-ligand binding modes and their individual binding affinities. Unfortunately, the lack of thorough conformational sampling in docking and scoring protocols leads to difficulty discovering global minimum binding modes on a complicated energy landscape. The Movable Type (MT) method is a novel absolute binding free energy approach which has demonstrated itself to be robust across a wide range of targets and ligands. Traditionally, the MT method is used with protein-ligand binding modes generated with rigid-receptor or flexible-receptor (induced fit) docking protocols; however, these protocols are by their nature less likely to be effective with more highly flexible targets or with those situations in which binding involves multiple step pathways. In these situations, more thorough samplings are required to better explain the free energy of binding. Therefore, to explore the prediction capability and computational efficiency of the MT method when using more thorough protein-ligand conformational sampling protocols, in the present work, we introduced a series of binding mode modeling protocols ranging from conventional docking routines to single-trajectory conventional molecular dynamics (cMD) and parallel Monte Carlo molecular dynamics (MCMD). Through validation against several structurally and mechanistically diverse protein-ligand test sets, we explore the performance of the MT method as a virtual screening tool to work with the docking protocols and as an MD simulation-based binding free energy tool.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Ligands
  • Molecular Docking Simulation
  • Molecular Dynamics Simulation*
  • Protein Binding
  • Protein Conformation
  • Proteins / chemistry
  • Research Design*

Substances

  • Ligands
  • Proteins