Selectivity mechanism of muscarinic acetylcholine receptor antagonism through in silico investigation

Phys Chem Chem Phys. 2022 Nov 2;24(42):26269-26287. doi: 10.1039/d2cp02972c.

Abstract

Structures of muscarinic acetylcholine receptors illustrate the strikingly high degree of homology of the residues among isoforms, thus leading to difficulty in achieving subtype selectivity when targeting these receptors and causing undesired side effects when treating the corresponding diseases. Considering the urgent need for more selective and potency therapies, this study is aimed at revealing the selectivity mechanism against M4/5 via in silico strategies, revealing crucial molecular interactions such as hydrogen bonds and pi-cation interaction formed between the key residues TYR416, ASN417, and TRP435 of M4, respectively, hydrophobic pocket formed by the key residues, especially CYS484 of M5. Besides, the water around TYR416M4 and ASN459M5, which can be replaced by substituent groups which can form the hydrogen bond interaction network by simulated bridging water and the water around ASP112M4, whose replacement maybe not contribute to the increase in binding affinity of the compound, may affect the inhibitory selectivity among M4/5 in the aspect of the solvent. Moreover, from the point of inhibitors, compounds with a positively ionizable group could selectively bind to M4 receptors, while hydrophobic molecules may bind preferably to M5. We believe that the current study would provide a basis for the design of subsequent M4/5 selective antagonists.

MeSH terms

  • Hydrogen Bonding
  • Hydrophobic and Hydrophilic Interactions
  • Receptors, Muscarinic* / metabolism
  • Water*

Substances

  • Receptors, Muscarinic
  • Water