Deciphering the impact of anthropogenic coastal infrastructure on shoreline dynamicity along Gopalpur coast of Odisha (India): An integrated assessment with geospatial and field-based approaches

Sci Total Environ. 2023 Feb 1;858(Pt 1):159625. doi: 10.1016/j.scitotenv.2022.159625. Epub 2022 Oct 22.

Abstract

Odisha's coastline supports various development activities that are critical to the state and national economy, such as oil and gas, ports and harbors, power plants, fishing, tourism, and mining that continues to not only detriment the coastal ecology but also affect the overall shoreline morphodynamics. The morphological changes are complicated processes involving both natural and human-induced drivers, but it is critical to understand how recent development activities further impact beach morphodynamics and shoreline dynamicity. The study analyzes the overall shoreline morphodynamics in response to the recent development of port and other related infrastructure for annual and decadal scale using two-dimensional (2-D) shoreline changes along with detailed 3-D beach profile volumetric changes for different studied zones along the Gopalpur coast. The results reveal that nearly all studied zones of the Gopalpur shoreline, Zone-4 (EPR = -05.64 m a-1 and LRR = -04.25 m a-1), Zone-3 (EPR = -04.51 m a-1 and LRR = -07.01 m a-1) and Zone-1 (EPR = -2.85 m a-1 and LRR = -01.46 m a-1), experienced erosion between 2010 and 2020 except Zone-2 (EPR = 24.31 m a-1 and LRR = 25.96 m a-1), which showed overall sign of deposition. The interannual shoreline analysis depicted that Zone-1 (tourist beach area) remained almost stable, Zone-2 (south of the breakwater of Gopalpur Port) showed accretion trends, Zone-4 (north side of the port) dominantly showed an erosion pattern, whereas Zone-3 (port area) showed a high level of uncertainty in the context of erosional or deposition trends. Calculated volumetric loss along the surveyed 3-D beach profiles supports these 2-D changes for all the studied zones. The results showed substantial changes in coastal morphodynamics in different studied zones of the Gopalpur region and severe erosion along its northern segment of the constructed coastal infrastructure. These findings can potentially promote effective coastal zone management and prevent further deterioration along the Gopalpur coast in future.

Keywords: 3-D beach profile; Beach morphodynamics; Odisha coast; Remote sensing; Shoreline dynamicity.

MeSH terms

  • Construction Industry*
  • Environmental Monitoring*
  • Humans
  • India
  • Soil Erosion