Conformational Analysis of the Loop-to-Helix Transition of the α-Helix3 Plastic Region in the N-Terminal Domain of Human Hsp90α by a Computational Biochemistry Approach

J Chem Inf Model. 2022 Oct 24. doi: 10.1021/acs.jcim.2c00984. Online ahead of print.

Abstract

Hsp90 is a chaperone protein aiding in correct protein folding and attractive for drug discovery. The structure of human Hsp90α N-terminal domain (NTD) is intriguing since the α-helix3 region of the ATP-binding site in the NTD plastically changes its conformation, i.e., loop-out, loop-in, and helical conformations, according to the bound inhibitor type. The plastic region structure is known to influence the mode of inhibition-inhibitors bound to a helix have a longer residence time in the complex, which is a factor of in vivo-active drugs, compared with loop binders. In this study, we analyzed the loop-to-helix transition of the plastic region through binding of a helix binder by a computational biochemistry approach. To generate the helical transition from the loop, the resorcinol inhibitor C1 complexed with a loop-in structure was alchemically transformed to the C10 inhibitor, which is known as a helix binder. The loop in the C1 complex possesses Leu107 tightly binding to the hydrophobic subpocket, considered as a key residue for the plasticity. From 10 × 1 μs simulations after the alchemical transformation, the helical transition was observed with a 29% success rate. Conformational analysis of the simulations identified residues possibly associated with the helical transition. The implementation of additional simulations (dihedral-constrained and in silico mutant simulations) led to a statistically significant increase in the transition success rate to 78%, as observed in Asn105 psi-constrained simulation. Therefore, we concluded that the Asn105 psi dihedral angle is most likely involved in the helical transition by a change of the dihedral angle to gauche-negative.