Preparation and performance study of a reactive polyurethane hot-melt adhesive/CS-Fe3O4 magnetic nanocomposite film/fabric

RSC Adv. 2022 Sep 28;12(42):27463-27472. doi: 10.1039/d2ra05614c. eCollection 2022 Sep 22.

Abstract

Magnetic nanoparticles are attracting significant attention for their wide application as biomaterials and magnetic storage materials. As an environmentally friendly adhesive, reactive polyurethane hot-melt adhesive (PUR) is a biocompatible polymer with a wide range of applications. In this paper, chitosan (CS)-surface-modified magnetic Fe3O4 nanoparticles were synthesized by the sol-gel method. Surface modification of the Fe3O4 nanoparticles with CS enhanced their mechanical properties in PUR. The nanoparticles were characterized by Fourier transform infrared (FTIR) and X-ray diffraction (XRD) analyses, while their surface morphology was elucidated using scanning electron microscopy (SEM) and projection electron microscopy (TEM) techniques. Subsequently, PUR/CS-Fe3O4 magnetic nanocomposite films were prepared using an in situ method, wherein different amounts of CS-surface-modified magnetic Fe3O4 nanoparticles were doped into the PUR and coated on the films. The thermal, UV resistance and mechanical properties of the PUR/CS-Fe3O4 magnetic nanocomposite films were investigated by TGA, UV spectrometer and tensile testing. CS-Fe3O4 nanoparticles were successfully prepared using the sol-gel method and CS to modify the surface of the Fe3O4 nanoparticles. The results show that the mechanical properties and UV resistance of PUR/CS-Fe3O4 magnetic nanocomposites are improved by almost 50%, so the constructed PUR/CS-Fe3O4 magnetic nanocomposites have good UV-resistant properties and mechanical properties. The as-synthesized CS-Fe3O4 magnetic nanocomposites show great potential for application to mechanical and textile development.