A bibliometric analysis of PROTAC from 2001 to 2021

Eur J Med Chem. 2022 Dec 15:244:114838. doi: 10.1016/j.ejmech.2022.114838. Epub 2022 Oct 14.

Abstract

Proteolysis targeting chimera (PROTAC) technology, one of the targeted protein degradation technologies, has drawn marked attention from researchers of both academia and industry in recent years. After over two decades of development, the literature on it has proliferated. In order to better grasp the frontiers and hot spots of PROTAC, this bibliometric analysis was carried out. The articles and reviews regarding PROTAC were culled from the Web of Science Core Collection. General information and the trend of publication outputs, countries/regions, authors, journals, influential papers, and keywords in this field were visually analyzed using CtieSpace, VOSviewer, or Excel software. As a result, a total of 808 publications were included. The number of papers regarding PROTAC significantly increased yearly. These papers mainly come from 45 countries/regions led by the USA and China. 3886 authors were identified participating in these studies, among which Craig M. Crews had the most significant number and influential articles. Journal of Medicinal Chemistry and European Journal of Medicinal Chemistry are the two journals with the most papers. After analysis, the most influential papers were identified in the area, including highly cited papers, references with citation burst, and high co-citated papers. The most common keywords including cancer, E3 ligase, drug discovery, epigenetic, resistance, and so on, represent the current and developing areas of study. BRDs, androgen receptor (AR), HDACs, estrogen receptor (ER), EGFR, CDKs, and KRAS are the most common targets. At last, frontiers and challenges of PROTAC were discussed through the bibliometric analysis. This paper will be helpful for better understanding the frontiers and hotspots of PROTAC.

Keywords: Bibliometric; Cancer; CiteSpace; Proteolysis targeting chimera (PROTAC); VOSviewer.

Publication types

  • Review

MeSH terms

  • Bibliometrics
  • Proteolysis*