Creative biological lignin conversion routes toward lignin valorization

Trends Biotechnol. 2022 Dec;40(12):1550-1566. doi: 10.1016/j.tibtech.2022.09.014. Epub 2022 Oct 18.

Abstract

Lignin, the largest renewable aromatic resource, is a promising alternative feedstock for the sustainable production of various chemicals, fuels, and materials. Despite this potential, lignin is characterized by heterogeneous and macromolecular structures that must be addressed. In this review, we present biological lignin conversion routes (BLCRs) that offer opportunities for overcoming these challenges, making lignin valorization feasible. Funneling heterogeneous aromatics via a 'biological funnel' offers a high-specificity bioconversion route for aromatic platform chemicals. The inherent aromaticity of lignin drives atom-economic functionalization routes toward aromatic natural product generation. By harnessing the ligninolytic capacities of specific microbial systems, powerful aromatic ring-opening routes can be developed to generate various value-added products. Thus, BLCRs hold the promise to make lignin valorization feasible and enable a lignocellulose-based bioeconomy.

Keywords: aromatic natural product; biological funnel; carbon neutrality; lignin valorization; sustainable biorefinery; synthetic biology.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biochemistry
  • Lignin* / chemistry

Substances

  • Lignin