Unconventional pairing in few-fermion systems at finite temperature

Sci Rep. 2022 Oct 19;12(1):17476. doi: 10.1038/s41598-022-22411-w.

Abstract

Attractively interacting two-component mixtures of fermionic particles confined in a one-dimensional harmonic trap are investigated. Properties of balanced and imbalanced systems are systematically explored with the exact diagonalization approach, focusing on the finite-temperature effects. Using single- and two-particle density distributions, specific non-classical pairing correlations are analyzed in terms of the noise correlations-quantity directly accessible in state-of-the-art experiments with ultra-cold atoms. It is shown that along with increasing temperature, any imbalanced system hosting Fulde-Ferrel-Larkin-Ovchinnikov pairs crossovers to a standard Bardeen-Cooper-Schrieffer one characterized by zero net momentum of resulting pairs. By performing calculations for systems with different imbalances, the approximate boundary between the two phases on a phase diagram is determined.