Multi-spectral radiation thermometry based on an Alpha spectrum-LM algorithm under the background of high temperature and intense reflection

Opt Express. 2022 Sep 26;30(20):36603-36621. doi: 10.1364/OE.472493.

Abstract

In order to meet the needs of multi-spectral radiation temperature measurement under high temperature background, this paper studies the problems of reflected radiation interference and spectral emissivity difficult to obtain in high temperature and intense reflection environment. First, using discrete triangular surface elements and radiation angle coefficients, an analysis model of high temperature background reflected radiation is constructed to describe the variation characteristics of high temperature background reflected radiation. Secondly, the least squares support vector machine (LSSVM) is optimized by particle swarm optimization (PSO) algorithm, and an emissivity model identification algorithm based on Alpha spectrum-Levenberg Marquarelt (LM) algorithm is proposed, which has stronger applicability and accuracy than existing emissivity model identification methods. Finally, the high temperature background radiation and the emissivity model are combined to construct and solve the multi-spectral target equation, so as to realize the reflected radiation error correction and radiation temperature measurement under the high temperature and intense reflection background. The simulation and experimental comparison with the existing methods show that the temperature measurement error of the radiation temperature measurement method proposed in this paper is below 9.5K, which can effectively correct the reflected radiation error and further improve the temperature measurement accuracy.