All-inorganic liquid phase quantum dots and blue laser diode-based white-light source for simultaneous high-speed visible light communication and high-efficiency solid-state lighting

Opt Express. 2022 Sep 26;30(20):35112-35124. doi: 10.1364/OE.469334.

Abstract

In recent years, cesium lead bromide (CsPbBr3) and cadmium selenide/zinc sulfide (CdSe/ZnS) quantum dots have been widely investigated to enhance the capacity of visible light communication (VLC) and solid-state lighting (SSL). Herein, liquid-phase color converter (LCC) glass cavities and solid-phase color converter (SCC) films with green-emitting CsPbBr3 and red-emitting CdSe/ZnS are fabricated to investigate and compare their performance. A facile high-quality LCC-based white laser diode (WLD) is fabricated by combining blue LD with LCC CsPbBr3 and CdSe/ZnS glass cavities as color conversion layers. The LCC-based WLD achieves bright white light with a color rendering index of 85, a correlated color temperature of 5520 K, and a Commission Internationale de L'Eclairage (CIE) coordinates at (0.32, 0.34). Moreover, the VLC system exhibits a modulation bandwidth of 855 MHz and the capability to transmit a real-time data rate of up to 2.1 Gbps over a transmission distance of 1.2 meters. These results indicate that the fabricated WLD is a promising lighting device for simultaneous high-speed VLC and high-efficiency SSL.