Tri-channel metasurface for watermarked structural-color nanoprinting and holographic imaging

Opt Express. 2022 Oct 10;30(21):37554-37565. doi: 10.1364/OE.472789.

Abstract

Structural-color nanoprinting, which can generate vivid colors with spatial resolution at subwavelength level, possesses potential market in optical anticounterfeiting and information encryption. Herein, we propose an ultracompact metasurface with a single-cell design strategy to establish three independent information channels for simultaneous watermarked structural-color nanoprinting and holographic imaging. Dual-channel spectrum manipulation and single-channel phase manipulation are combined together by elaborately introducing the orientation degeneracy into the design of variable dielectric nanobricks. Hence, a structural-color nanoprinting image covered with polarization-dependent watermarks and a holographic image can be respectively generated under different decoded environments. The proposed metasurface shows a flexible method for tri-channel image display with high information capacity, and exhibits dual-mode anticounterfeiting with double safeguards, i.e., polarization-controlled watermarks and a far-field holographic image. This study provides a feasible route to develop multifunctional metasurfaces for applications including optical anticounterfeiting, information encryption and security, information multiplexing, etc.