SHANK family on stem cell fate and development

Cell Death Dis. 2022 Oct 18;13(10):880. doi: 10.1038/s41419-022-05325-3.

Abstract

SH3 and multiple ankyrin repeat domains protein (SHANK) 1, SHANK2, and SHANK3 encode a family of postsynaptic scaffolding proteins present at glutamatergic synapses and play a crucial role in synaptogenesis. In the past years, studies have provided a preliminary appreciation and understanding of the influence of the SHANK family in controlling stem cell fate. Here, we review the modulation of SHANK gene expression and their related signaling pathways, allowing for an in-depth understanding of the role of SHANK in stem cells. Besides, their role in governing stem cell self-renewal, proliferation, differentiation, apoptosis, and metabolism are explored in neural stem cells (NSCs), stem cells from apical papilla (SCAPs), and induced pluripotent stem cells (iPSCs). Moreover, iPSCs and embryonic stem cells (ESCs) have been utilized as model systems for analyzing their functions in terms of neuronal development. SHANK-mediated stem cell fate determination is an intricate and multifactorial process. This study aims to achieve a better understanding of the role of SHANK in these processes and their clinical applications, thereby advancing the field of stem cell therapy. This review unravels the regulatory role of the SHANK family in the fate of stem cells.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Neurogenesis*
  • Stem Cells
  • Synapses*