High Dielectric Transparent Film Tailored by Acceptor and Donor Codoping

Small. 2022 Dec;18(50):e2107168. doi: 10.1002/smll.202107168. Epub 2022 Oct 18.

Abstract

High dielectric constant materials are of particular current interests as indispensable components in transistors, capacitors, etc. In this context, there are emerging trends to exploit defect engineering in dielectric ceramics for enhancing the performance. However, demonstrations of similar high dielectric performance in integration-compatible crystalline films are rare. Herein, such a breakthrough via the functionalization of donor-acceptor dipoles by compositional tuning in GaCu codoped ZnO films is reported. The dielectric constant reaches ~200 at 1 kHz and the optical transmittance in visible light reaches ~80%. Importantly, by analyzing the impedance spectroscopy data, prominent relaxation mechanisms in correlation with the dipole properties, enabling consistent explanations of the dielectric constant as a function of frequency are discriminated. The atomistic nature of the dipoles is revealed by the systematic X-ray spectroscopy analysis. Spectacularly, similar trends for the dielectric properties are observed, while synthesizing samples by pulsed laser deposition and ion implantation, indicating the general character of the phenomena.

Keywords: donor-acceptor codoping; high-dielectric transparent films; ion implantation.