Simulating multilevel diffractive optical elements on a spatial light modulator

Appl Opt. 2022 Sep 10;61(26):7625-7631. doi: 10.1364/AO.469511.

Abstract

Multilevel diffractive optical elements (DOEs) offer a solution to approximate complex diffractive phase profiles in a stepwise manner. However, while much attention has focused on efficiency, the impact on modal content in the context of structured light has, to our best knowledge, remained unexplored. Here, we outline a simple theory that accounts for efficiency and modal purity in arbitrary structured light produced by multilevel DOEs. We make use of a phase-only spatial light modulator as a "testbed" to experimentally implement various multileveled diffractive profiles, including orbital angular momentum beams, Bessel beams, and Airy beams, outlining the subsequent efficiency and purity both theoretically and experimentally, confirming that a low number of multilevel steps can produce modes of high fidelity. Our work will be useful to those wishing to digitally evaluate modal effects from DOEs prior to physical fabrication.