Adaptive section non-uniformity correction method of short-wave infrared star images for a star tracker

Appl Opt. 2022 Aug 20;61(24):6992-6999. doi: 10.1364/AO.457458.

Abstract

Using a short-wave infrared (SWIR) camera to improve daytime star detection ability has become a trend for near-ground star trackers. However, the noise of SWIR star images greatly decreases the accuracy of the attitude measurement results. Aiming at a real-time application of the star tracker, an adaptive section non-uniformity correction method based on the two-point correction algorithm for SWIR star images is proposed. The correction parameters of different sections are first calculated after the defective pixels are detected and excluded, and the real-time image is corrected using adaptive section parameters according to its gray value distribution. Finally, the defective pixels are compensated for by their adjacent corrected pixels. The correction results of both simulated and live-shot star images have verified the validity of the proposed method. It adapts to different sky background radiation, which is effective for the application of a star tracker. By comparing with other linear correction methods, it has the advantages of low calculation complexity, better real-time performance, and easier implementation in the hardware.