Computational optical system design: a global optimization method in a simplified imaging system

Appl Opt. 2022 Jul 10;61(20):5916-5925. doi: 10.1364/AO.456939.

Abstract

An optical imaging system often has problems of high complexity and low energy transmittance to compensate for aberrations. Here we propose a method to correct aberrations by coupling an optical subsystem with a digital subsystem. Specifically, in the global optimization process, the two subsystems correct their respective, easily handled aberrations so that the final imaging aberration is minimized. We design simple lenses with this method and assess imaging quality. In addition, we conduct a tolerance analysis for the proposed method and verify the effectiveness of deconvolution using a spatially varying point spread function (SVPSF) in the actual imaging process. Simulation results show the superiority of the proposed method compared with the conventional design and the feasibility of simplifying the optical system. Experimental results prove the effectiveness of deconvolution using SVPSF.