Nitrogen Fertilizer Application Alters the Root Endophyte Bacterial Microbiome in Maize Plants, but Not in the Stem or Rhizosphere Soil

Microbiol Spectr. 2022 Dec 21;10(6):e0178522. doi: 10.1128/spectrum.01785-22. Epub 2022 Oct 18.

Abstract

Plant-associated microorganisms that affect plant development, their composition, and their functionality are determined by the host, soil conditions, and agricultural practices. How agricultural practices affect the rhizosphere microbiome has been well studied, but less is known about how they might affect plant endophytes. In this study, the metagenomic DNA from the rhizosphere and endophyte communities of root and stem of maize plants was extracted and sequenced with the "diversity arrays technology sequencing," while the bacterial community and functionality (organized by subsystems from general to specific functions) were investigated in crops cultivated with or without tillage and with or without N fertilizer application. Tillage had a small significant effect on the bacterial community in the rhizosphere, but N fertilizer had a highly significant effect on the roots, but not on the rhizosphere or stem. The relative abundance of many bacterial species was significantly different in the roots and stem of fertilized maize plants, but not in the unfertilized ones. The abundance of N cycle genes was affected by N fertilization application, most accentuated in the roots. How these changes in bacterial composition and N genes composition might affect plant development or crop yields has still to be unraveled. IMPORTANCE We investigated the bacterial community structure in the rhizosphere, root, and stem of maize plants cultivated under different agricultural techniques, i.e., with or without N fertilization, and with or without tillage. We found that the bacterial community was defined mostly by the plant compartment and less by agricultural techniques. In the roots, N fertilizer application affected the bacterial community structure, the microbiome functionality, and the abundance of genes involved in the N cycle, but the effect in the rhizosphere and stem was much smaller. Contrary, tillage did not affect the maize microbiome. This study enriches our knowledge about the plant-microbiome system and how N fertilization application affected it.

Keywords: DArT-seq; agricultural practices; bacterial community structure; functionality of maize bacterial community; genes involved in N cycling.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacteria / genetics
  • Crops, Agricultural
  • Endophytes
  • Fertilizers
  • Microbiota*
  • Nitrogen
  • Rhizosphere
  • Soil Microbiology
  • Soil* / chemistry
  • Zea mays / microbiology

Substances

  • Soil
  • Nitrogen
  • Fertilizers