Characterization and immunogenicity of SARS-CoV-2 spike proteins with varied glycosylation

Vaccine. 2022 Nov 8;40(47):6839-6848. doi: 10.1016/j.vaccine.2022.09.057. Epub 2022 Sep 26.

Abstract

The ongoing coronavirus disease-19 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has drastically changed our way of life and continues to have an unmitigated socioeconomic impact across the globe. Research into potential vaccine design and production is focused on the spike (S) protein of the virus, which is critical for virus entry into host cells. Yet, whether the degree of glycosylation in the S protein is associated with vaccine efficacy remains unclear. Here, we first optimized the expression of the S protein in mammalian cells. While we found no significant discrepancy in purity, homogeneity, or receptor binding ability among S proteins derived from 293F cells (referred to as 293F S-2P), 293S GnTI- cells (defective in N-acetylglucosaminyl transferase I enzyme; 293S S-2P), or TN-5B1-4 insect cells (Bac S-2P), there was significant variation in the glycosylation patterns and thermal stability of the proteins. Compared with the partially glycosylated 293S S-2P or Bac S-2P, the fully glycosylated 293F S-2P exhibited higher binding reactivity to convalescent sera. In addition, 293F S-2P induced higher IgG and neutralizing antibody titres than 293S or Bac S-2P in mice. Furthermore, a prime-boost-boost regimen, using a combined immunization of S-2P proteins with various degrees of glycosylation, elicited a more robust neutralizing antibody response than a single S-2P alone. Collectively, this study provides insight into ways to design a more effective SARS-CoV-2 immunogen.

Keywords: 293 cells; Glycosylation; Immunogenicity; SARS-CoV-2; Spike.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antibodies, Neutralizing
  • Antibodies, Viral
  • COVID-19 Serotherapy
  • COVID-19* / prevention & control
  • Glycosylation
  • Humans
  • Mammals / metabolism
  • Mice
  • SARS-CoV-2
  • Spike Glycoprotein, Coronavirus*

Substances

  • spike protein, SARS-CoV-2
  • Spike Glycoprotein, Coronavirus
  • Antibodies, Neutralizing
  • Antibodies, Viral