Host-microbiota interactions play a crucial role in oyster adaptation to rising seawater temperature in summer

Environ Res. 2023 Jan 1;216(Pt 2):114585. doi: 10.1016/j.envres.2022.114585. Epub 2022 Oct 14.

Abstract

Climate change, represented by rising and fluctuating temperature, induces systematic changes in marine organisms and in their bacterial symbionts. However, the role of host-microbiota interactions in the host's response to rising temperature and the underlying mechanisms are incompletely understood in marine organisms. Here, the symbiotic intestinal microbiota and transcriptional responses between diploid and triploid oysters that displayed susceptible and resistant performance under the stress of rising temperature during a summer mortality event were compared to investigate the host-microbiota interactions. The rising and fluctuating temperatures triggered an earlier onset and higher mortality in susceptible oysters (46.7%) than in resistant oysters (17.3%). Correlation analysis between microbial properties and environmental factors showed temperature was strongly correlated with indices of α-diversity and the abundance of top 10 phyla, indicating that temperature significantly shaped the intestinal microbiota of oysters. The microbiota structure of resistant oysters exhibited more rapid changes in composition and diversity compared to susceptible oysters before peak mortality, indicating that resistant oysters possessed a stronger ability to regulate their symbiotic microbiota. Meanwhile, linear discriminant analysis effect size (LefSe) analysis found that the probiotics Verrucomicrobiales and Clostridiales were highly enriched in resistant oysters, and that potential pathogens Betaproteobacteriales and Acidobacteriales were enriched in susceptible oysters. These results implied that the symbiotic microbiota played a significant role in the oysters' adaptation to rising temperature. Accompanying the decrease in unfavorable bacteria before peak mortality, genes related to phagocytosis and lysozymes were upregulated and the xenobiotics elimination pathway was exclusively expressed in resistant oysters, demonstrating the validity of these immunological functions in controlling proliferation of pathogens driven by rising temperature. Compromised immunological functions might lead to proliferation of pathogens in susceptible oysters. This study might uncover a conserved mechanism of adaptation to rising temperature in marine invertebrates from the perspective of interactions between host and symbiotic microbiota.

Keywords: Adaptation; Intestinal microbiota; Oyster mortality; Rising temperature; Transcriptomic response.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bacteria / genetics
  • Crassostrea* / microbiology
  • Microbiota*
  • Seasons
  • Seawater / chemistry
  • Temperature