Anticancer mechanism studies of iridium(III) complexes inhibiting osteosarcoma HOS cells proliferation

J Inorg Biochem. 2022 Dec:237:112011. doi: 10.1016/j.jinorgbio.2022.112011. Epub 2022 Sep 20.

Abstract

Three iridium (III) polypyridine complexes [Ir(bzq)2(maip)](PF6) (Ir1,bzq = benzo[h]quinoline, maip = 3-aminophenyl-1H-imidazo[4,5-f][1,10]phenanthroline), [Ir(bzq)2(apip)](PF6) (Ir2, apip = 2-aminophenyl-1H-imidazo[4,5-f][1,10]phenanthroline) and [Ir(bzq)2(paip)](PF6) (Ir3, paip = 4-aminophenyl-1H-imidazo[4,5-f][1,10]phenanthroline) were synthesized and characterized. The cytotoxic activities of the three complexes against human osteosarcoma HOS, U2OS, MG63 and normal LO2 cells were evaluated by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) method. The results showed that Ir1-3 exhibited moderate antitumor activity against HOS with IC50 of 21.8 ± 0. 4 μM,10.5 ± 1.8 μM and 7.4 ± 0.4 μM, respectively. We found that Ir1-3 can effectively inhibit HOS cells growth and blocked the cell cycle at the G0/G1 phase. Further studies revealed that complexes can increase intracellular reactive oxygen species (ROS) and Ca2+, which accompanied by mitochondria-mediated intrinsic apoptosis pathway. In addition, autophagy was also investigated. Taken together, the complexes induce HOS apoptosis through a ROS-mediated mitochondrial dysfunction pathway and inhibition of the PI3K (phosphatidylinositol 3-kinase)/AKT (protein kinase B)/mTOR (mammalian target of rapamycin) signaling pathway. This study provides useful help for understanding the anticancer mechanism of iridium (III) complexes toward osteosarcoma treatment.

Keywords: Antitumor; Autophagy; HOS cells; Iridium (III) complexes; Mitochondria; Osteosarcoma.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antineoplastic Agents* / pharmacology
  • Apoptosis
  • Cell Line, Tumor
  • Cell Proliferation
  • Coordination Complexes* / pharmacology
  • Humans
  • Iridium / pharmacology
  • Osteosarcoma* / drug therapy
  • Phenanthrolines / pharmacology
  • Phosphatidylinositol 3-Kinases
  • Reactive Oxygen Species / metabolism

Substances

  • Iridium
  • Reactive Oxygen Species
  • Phenanthrolines
  • Phosphatidylinositol 3-Kinases
  • Coordination Complexes
  • Antineoplastic Agents