Ultra-Narrow Linewidth Photo-Emitters in Polymorphic Selenium Nanoflakes

Small. 2022 Dec;18(52):e2204302. doi: 10.1002/smll.202204302. Epub 2022 Oct 17.

Abstract

Photoluminescence (PL) in state-of-the-art 2D materials suffers from narrow spectral coverage, relatively broad linewidths, and poor room-temperature (RT) functionality. The authors report ultra-narrow linewidth photo-emitters (ULPs) across the visible to near-infrared wavelength at RT in polymorphic selenium nanoflakes (SeNFs), synthesized via a hot-pressing strategy. Photo-emitters in NIR exhibit full width at half maximum (Γ) of 330 ± 90 µeV, an order of magnitude narrower than the reported ULPs in 2D materials at 300 K, and decrease to 82 ± 70 µeV at 100 K, with coherence time (τc ) of 21.3 ps. The capping substrate enforced spatial confinement during thermal expansion at 250 °C is believed to trigger a localized crystal symmetry breaking in SeNFs, causing a polymorphic transition from the semiconducting trigonal (t) to quasi-metallic orthorhombic (orth) phase. Fine structure splitting in orth-Se causes degeneracy in defect-associated bright excitons, resulting in ultra-sharp emission. Combined theoretical and experimental findings, an optimal biaxial compressive strain of -0.45% cm-1 in t-Se is uncovered, induced by the coefficient of thermal expansion mismatch at the selenium/sapphire interface, resulting in bandgap widening from 1.74 to 2.23 ± 0.1 eV. This report underpins the underlying correlation between crystal symmetry breaking induced polymorphism and RT ULPs in SeNFs, and their phase change characteristics.

Keywords: 2D materials; hot-pressing; polymorphic phase-transition; selenium nanoflakes; ultra-narrow linewidth photo-emitters.