ATM- and ATR-induced primary ciliogenesis promotes cisplatin resistance in pancreatic ductal adenocarcinoma

J Cell Physiol. 2022 Dec;237(12):4487-4503. doi: 10.1002/jcp.30898. Epub 2022 Oct 17.

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers because of its late diagnosis and chemoresistance. Primary cilia, the cellular antennae, are observed in most human cells to maintain development and differentiation. Primary cilia are gradually lost during the progression of pancreatic cancer and are eventually absent in PDAC. Here, we showed that cisplatin-resistant PDAC regrew primary cilia. Additionally, genetic or pharmacological disruption of primary cilia sensitized PDAC to cisplatin treatment. Mechanistically, ataxia telangiectasia mutated (ATM) and ATM and RAD3-related (ATR), tumor suppressors that initiate DNA damage responses, promoted the excessive formation of centriolar satellites (EFoCS) and autophagy activation. Disruption of EFoCS and autophagy inhibited primary ciliogenesis, sensitizing PDAC cells to cisplatin treatment. Collectively, our findings revealed an unexpected interplay among the DNA damage response, primary cilia, and chemoresistance in PDAC and deciphered the molecular mechanism by which ATM/ATR-mediated EFoCS and autophagy cooperatively regulate primary ciliogenesis.

Keywords: DNA damage response; autophagy; centriolar satellites; chemoresistance; pancreatic ductal adenocarcinoma; primary cilia.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Ataxia Telangiectasia Mutated Proteins* / genetics
  • Ataxia Telangiectasia Mutated Proteins* / metabolism
  • Carcinoma, Pancreatic Ductal* / drug therapy
  • Carcinoma, Pancreatic Ductal* / genetics
  • Carcinoma, Pancreatic Ductal* / pathology
  • Cell Line, Tumor
  • Cilia
  • Cisplatin / pharmacology
  • Cisplatin / therapeutic use
  • DNA Damage
  • Drug Resistance, Neoplasm*
  • Humans
  • Pancreatic Neoplasms* / drug therapy
  • Pancreatic Neoplasms* / genetics
  • Pancreatic Neoplasms* / pathology

Substances

  • Ataxia Telangiectasia Mutated Proteins
  • ATM protein, human
  • ATR protein, human
  • Cisplatin