Large-scale waves of activity in the neonatal mouse brain in vivo occur almost exclusively during sleep cycles

Dev Neurobiol. 2022 Oct;82(7-8):596-612. doi: 10.1002/dneu.22901. Epub 2022 Oct 28.

Abstract

Spontaneous electrical activity plays major roles in the development of cortical circuitry. This activity can occur highly localized regions or can propagate over the entire cortex. Both types of activity coexist during early development. To investigate how different forms of spontaneous activity might be temporally segregated, we used wide-field trans-cranial calcium imaging over an entire hemisphere in P1-P8 mouse pups. We found that spontaneous waves of activity that propagate to cover the majority of the cortex (large-scale waves; LSWs) are generated at the end of the first postnatal week, along with several other forms of more localized activity. We further found that LSWs are segregated into sleep cycles. In contrast, cortical activity during wake states is more spatially restricted and the few large-scale forms of activity that occur during wake can be distinguished from LSWs in sleep based on their initiation in the motor cortex and their correlation with body movements. This change in functional cortical circuitry to a state that is permissive for large-scale activity may temporally segregate different forms of activity during critical stages when activity-dependent circuit development occurs over many spatial scales. Our data also suggest that LSWs in early development may be a functional precursor to slow sleep waves in the adult, which play critical roles in memory consolidation and synaptic rescaling.

Keywords: calcium imaging; neonatal mouse; spontaneous activity.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Animals, Newborn
  • Cerebral Cortex*
  • Electroencephalography
  • Mice
  • Sleep*