Evaluating the role of IDO1 macrophages in immunotherapy using scRNA-seq and bulk-seq in colorectal cancer

Front Immunol. 2022 Sep 29:13:1006501. doi: 10.3389/fimmu.2022.1006501. eCollection 2022.

Abstract

Background: Macrophage infiltration is crucial for colorectal cancer (CRC) immunotherapy. Detailed classification of macrophage subsets will facilitate the selection of patients suitable for immunotherapy. However, the classification of macrophages in CRC is not currently detailed.

Methods: In this study, we combined single-cell RNA sequencing (scRNA-seq) and bulk-seq to analyze patients with colorectal cancer. scRNA-seq data were used to study cell-cell communication and to differentiate immune-infiltrating cells and macrophage subsets. Bulk-seq data were used to further analyze immune infiltration, clinical features, tumor mutational burden, and expression of immune checkpoint molecules in patients with CRC having different macrophage subsets.

Results: Seven macrophage subpopulations were identified, among which indoleamine 2,3 dioxygenase 1 (IDO1) macrophages had the most significant difference in the degree of infiltration among normal, microsatellite-unstable, and microsatellite-stable populations. We then performed gene set variation analysis using 12 marker genes of IDO1 macrophages and divided the patients into two clusters: high-IDO1 macrophages (H-IDO1M) and low-IDO1 macrophages (L-IDO1M). H-IDO1M showed higher infiltration of immune cells, higher expression of immune checkpoints, and less advanced pathological stages than L-IDO1M (p < 0.05).

Conclusions: This study elucidated that IDO1-macrophage-based molecular subtypes can predict the response to immunotherapy in patients with CRC. The results provide new insights into tumor immunity and help in clinical decisions regarding designing effective immunotherapy for these patients.

Keywords: IDO1; colorectal cancer (CRC); immunotherapy; macrophage; single-cell RNA sequencing (scRNA-seq); tumor immunity.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Colorectal Neoplasms* / genetics
  • Colorectal Neoplasms* / therapy
  • Humans
  • Immune Checkpoint Proteins
  • Immunotherapy
  • Indoleamine-Pyrrole 2,3,-Dioxygenase / genetics
  • Indoleamine-Pyrrole 2,3,-Dioxygenase / metabolism*
  • Macrophages / metabolism
  • Single-Cell Analysis
  • Tryptophan Oxygenase

Substances

  • IDO1 protein, human
  • Immune Checkpoint Proteins
  • Indoleamine-Pyrrole 2,3,-Dioxygenase
  • Tryptophan Oxygenase