Threshold switching strategy for unambiguous state discrimination of quadrature phase-shift-keying coherent states under thermal noise

Opt Express. 2022 Sep 12;30(19):34043-34052. doi: 10.1364/OE.466090.

Abstract

Quantum-enhanced measurement technologies can unambiguously discriminate coherent states with accuracy beyond the classical heterodyne measurement. However, typical quantum-enhanced measurement scheme is vulnerable to the thermal noise, which will change the photon counting statistics of the coherent state. This paper presents a threshold-switching strategy that can discriminate quadrature phase-shift-keying coherent states with performance surpassing the typical quantum-enhanced scheme. In our scheme, photon number resolving detectors are used to switch the value of the threshold, which can mitigate the influence of thermal noise and other imperfections. Simulation results show that our scheme unambiguously discriminates the signal states with higher correct probability and the same error ratio compared with the typical scheme. Besides, this scheme can reduce the error ratio simultaneously for thermal noise N ≤ 0.2. The paper demonstrations that quantum-enhanced measurement with the threshold-switching strategy can adapt to different thermal noises by switching the value of the threshold under situations of different thermal noises and signal states.