Hybrid modeling of perovskite light-emitting diodes with nanostructured emissive layers

Opt Express. 2022 Aug 29;30(18):33145-33155. doi: 10.1364/OE.465374.

Abstract

Perovskite light-emitting diodes (PeLEDs) have attracted much attention due to their superior performance. When a bottleneck of energy conversion efficiency is achieved with materials engineering, nanostructure incorporation proves to be a feasible approach to further improve device efficiencies via light extraction enhancement. The finite-difference time-domain simulation is widely used for optical analysis of nanostructured optoelectronic devices, but reliable modeling of PeLEDs with nanostructured emissive layers remains unmet due to the difficulty of locating dipole light sources. Herein we established a hybrid process for modeling light emission behaviors of such nanostructured PeLEDs by calibrating light source distribution through electrical simulations. This hybrid modeling method serves as a universal tool for structure optimization of light-emitting diodes with nanostructured emissive layers.