A review of generative adversarial network applications in optical coherence tomography image analysis

J Optom. 2022;15 Suppl 1(Suppl 1):S1-S11. doi: 10.1016/j.optom.2022.09.004. Epub 2022 Oct 12.

Abstract

Optical coherence tomography (OCT) has revolutionized ophthalmic clinical practice and research, as a result of the high-resolution images that the method is able to capture in a fast, non-invasive manner. Although clinicians can interpret OCT images qualitatively, the ability to quantitatively and automatically analyse these images represents a key goal for eye care by providing clinicians with immediate and relevant metrics to inform best clinical practice. The range of applications and methods to analyse OCT images is rich and rapidly expanding. With the advent of deep learning methods, the field has experienced significant progress with state-of-the-art-performance for several OCT image analysis tasks. Generative adversarial networks (GANs) represent a subfield of deep learning that allows for a range of novel applications not possible in most other deep learning methods, with the potential to provide more accurate and robust analyses. In this review, the progress in this field and clinical impact are reviewed and the potential future development of applications of GANs to OCT image processing are discussed.

Keywords: Deep learning; Generative adversarial networks; Image analysis; Optical coherence tomography.

Publication types

  • Review

MeSH terms

  • Humans
  • Image Processing, Computer-Assisted* / methods
  • Tomography, Optical Coherence*