Ratiometric thermometry using single Er3+-doped CaWO4phosphors

Nanotechnology. 2022 Nov 15;34(5). doi: 10.1088/1361-6528/ac9a55.

Abstract

Single doped CaWO4:Er3+phosphors were synthesized and studied for application of optical thermal sensing within a wide range of 98-773 K. Ratiometric strategy utilizing two luminescence intensity ratios, one between host and Er3+band (LIR1) and second between different Er3+transitions (LIR2), results in self-referencing temperature readouts. The presence of two temperature-dependent parameters could improve thermometric characteristics and broaden the working temperature range compared to a usual single-parameter thermometer. Thermometric performances of prepared samples were evaluated in terms of thermal sensitivities, temperature resolution and repeatability. The highest sensitivity of 2.09% K-1@300 K was found for LIR1, whereas LIR2provided more accurate thermal sensing with a temperature resolution of 0.06-0.1 K. Effect of Er3+doping concentration on sensing properties were studied. The presented findings indicate that CaWO4:Er3+phosphors are perspective in dual-mode thermal sensing with high sensitivity and sub-degree resolution.

Keywords: Er3+; luminescence intensity ratio; optical thermometry; phosphors; thermal sensitivity.