A DFT study on N2O oxidation and methanol synthesis over Bi4O6: single-site catalytic model of α-Bi2Mo3O12

J Mol Model. 2022 Oct 14;28(11):362. doi: 10.1007/s00894-022-05349-8.

Abstract

Catalytic conversion of methane to methanol is one of the most promising processes for effective natural gas resource utilization. In this work, Bi4O6-catalyzed oxidation of methane to methanol with N2O as an oxidizing reactant has been investigated by DFT calculation. For the overall reaction mechanism of three N2O molecules on Bi4O6 catalyst, two catalytic cycles were proposed. Cycle 1 involved the consecutive decomposition of the first two N2O molecules. Cycle 2 corresponded to the decomposition of the third N2O molecule. The activation barriers of the first and second N2O decomposition were computed to be 27.6 and 35.0 kcal/mol, respectively. The third N2O decomposition in cycle 2 required 36.1 kcal/mol activation barriers. Thus, cycle 1 was the main catalytic cycle for N2O as the cycle required lower in barriers than those of the other. Oxidation of methane to methanol on Bi4O7 and Bi4O8 catalysts was supposed to be a two-step mechanism consisting of H3C-H bond breaking and CH3-OH formation. The activation energies of the two steps were 32.7, 41.1, and 21.6, 17.2 kcal/mol for Bi4O7 and Bi4O8, respectively. Thus, methane oxidation over Bi4O8 was found to be more energetically favorable than those of Bi4O7, in which C-H bond breaking is the RDS. The present catalyst could be a promising material for the oxidation of methane to methanol. In summary, the single-site catalytic model study would be beneficial for guiding and searching for potential catalysts in heterogeneously catalyzed N2O decomposition and methanol synthesis as green as possible. However, theoretical investigation of this kind of catalyst's extended model system must be taken into account.

Keywords: Bismuth oxide; Green catalytic concept; Methanol synthesis; Nitrous oxide; Single-site catalytic model.