Collaborating eye to eye: Effects of workplace design on the perception of dominance of collaboration robots

Front Robot AI. 2022 Sep 27:9:999308. doi: 10.3389/frobt.2022.999308. eCollection 2022.

Abstract

The concept of Human-Robot Collaboration (HRC) describes innovative industrial work procedures, in which human staff works in close vicinity with robots on a shared task. Current HRC scenarios often deploy hand-guided robots or remote controls operated by the human collaboration partner. As HRC envisions active collaboration between both parties, ongoing research efforts aim to enhance the capabilities of industrial robots not only in the technical dimension but also in the robot's socio-interactive features. Apart from enabling the robot to autonomously complete the respective shared task in conjunction with a human partner, one essential aspect lifted from the group collaboration among humans is the communication between both entities. State-of-the-art research has identified communication as a significant contributor to successful collaboration between humans and industrial robots. Non-verbal gestures have been shown to be contributing aspect in conveying the respective state of the robot during the collaboration procedure. Research indicates that, depending on the viewing perspective, the usage of non-verbal gestures in humans can impact the interpersonal attribution of certain characteristics. Applied to collaborative robots such as the Yumi IRB 14000, which is equipped with two arms, specifically to mimic human actions, the perception of the robots' non-verbal behavior can affect the collaboration. Most important in this context are dominance emitting gestures by the robot that can reinforce negative attitudes towards robots, thus hampering the users' willingness and effectiveness to collaborate with the robot. By using a 3 × 3 within-subjects design online study, we investigated the effect of dominance gestures (Akimbo, crossing arms, and large arm spread) working in a standing position with an average male height, working in a standing position with an average female height, and working in a seated position on the perception of dominance of the robot. Overall 115 participants (58 female and 57 male) with an average age of 23 years evaluated nine videos of the robot. Results indicated that all presented gestures affect a person's perception of the robot in regards to its perceived characteristics and willingness to cooperate with the robot. The data also showed participants' increased attribution of dominance based on the presented viewing perspective.

Keywords: dominance; dual-arm robots; human factors; human-robot collaboration; industrial robots; non-verbal communication; online study; workplace ergonomics.