Research on high-temperature characteristics of a miniature Fabry-Pérot cavity acoustic sensor

Opt Express. 2022 Jul 18;30(15):26609-26619. doi: 10.1364/OE.465040.

Abstract

The applications of fiber-optic acoustic sensors are expanded to the high-temperature field, but it still faces challenges to realize the wide-band and high-sensitivity acoustic signal detection in high-temperature environments. Here, we propose a miniature membrane-free fiber-optic acoustic sensor based on a rigid Fabry-Pérot (F-P) cavity and construct an acoustic signal detection system. The system can achieve high-sensitivity acoustic detection while maintaining a wide frequency band in temperatures ranging from 20 °C to 200 °C. The prepared F-P cavity based on optical contact technology is the sensitive unit of the sensor, and has a high-quality factor of 8.8×105. Specifically, with the increasing of temperature, the sensitivity gradually increases, and the frequency response range does not change. A maximum sensitivity of 491.2 mV/Pa and a high signal-to-noise ratio of 60.9 dB are achieved at 200 °C. The sensor has an excellent acoustic signal response in the frequency range of 10 Hz-50 kHz with a flatness of ±2 dB. This study is important for the application of the fiber-optic acoustic sensor in high-temperature environments.