An Improved Frequency Domain Guided Thermal Imager Strips Removal Algorithm Based on LRSID

Sensors (Basel). 2022 Sep 28;22(19):7348. doi: 10.3390/s22197348.

Abstract

The thermal imaging image of the Sustainable Development Science Satellite (SDGSAT-1) is mainly used for high-resolution observations of the ground width, due to the influence of blind elements and non-uniformity of the detector, and the system is a pendulum sweep imaging mode, resulting in fringed noise in the image. In this paper, a Fringing algorithm based on LRSID (low-rank-based single-image decomposition) algorithm is proposed, which can effectively remove the lateral and vertical fringe noise of the thermal imager and maintain the detail and clarity of the image. First, pretreatment of the obvious light and dark stripes then, based on LLSID algorithm, the vertical direction pinstripes and horizontal stripes are processed; finally, the fringed frequency band of the original image is replaced in the frequency domain with the image frequency domain processed by the LRSID algorithm, and then the Fourier inverse transformation is performed to obtain the final image. Using the method proposed in this paper, the simulated and actual SDGSAT-1 thermal imaging camera remote sensing stripes images are removed, and the visual and quantitative indicators are compared with the processing results of other algorithms, and the results show that the proposed algorithm has the best performance to remove the stripes, which can effectively remove horizontal and vertical fringes at the same time, and retain the detail and clarity of the image.

Keywords: SDGSAT-1; frequency domain guidance; fringe noise; image processing; thermal infrared.