Chemical and Enzymatic Fiber Modification to Enhance the Mechanical Properties of CMC Composite Films

Polymers (Basel). 2022 Oct 2;14(19):4127. doi: 10.3390/polym14194127.

Abstract

Carboxymethyl cellulose (CMC) is a cellulose derivative that can be obtained from wood, bamboo, rattan, straw, and other cellulosic materials. CMC can be used to produce biofilms for many purposes, but the properties of these resulting films make them unsuitable for some applications. The effects of three kinds of plant fiber addition on CMC film properties was investigated using CMC derived from eucalyptus bark cellulose. Tensile strength (TS) and elongation at break (EB) of CMC/sodium alginate/glycerol composite films were 26.2 MPa and 7.35%, respectively. Tensile strength of CMC composite films substantially increased, reaching an optimum at 0.50 g of fiber. The enhancement due to industrial hemp hurd fiber on CMC composite films was more obvious. Pretreatment with hydrogen peroxide (H2O2) and glacial acetic acid (CH3COOH) produced films with a TS of 35.9 MPa and an EB of 1.61%. TS values with pectinase pretreated fiber films was 41.3 MPa and EB was 1.76%. TS of films pretreated with pectinase and hemicellulase was 45.2 MPa and EB was 4.18%. Chemical and enzymatic treatment both improved fiber crystallinity, but film tensile strength was improved to a greater extent by enzymatic treatment. Surface roughness and pyrolysis residue of the film increased after fiber addition, but Fourier transform infrared spectroscopy (FTIR), opacity, and water vapor transmission coefficients were largely unchanged. Adding fiber improved tensile strength of CMC/sodium alginate/glycerol composite films and broadened the application range of CMC composite films without adversely affecting film performance.

Keywords: FTIR; TG; XRD; Yunnan pine wood; bamboo culms; eucalyptus bark; industrial hemp hurd; mechanical properties.