A Review on the Different Aspects and Challenges of the Dry Reforming of Methane (DRM) Reaction

Nanomaterials (Basel). 2022 Sep 28;12(19):3400. doi: 10.3390/nano12193400.

Abstract

The dry reforming of methane (DRM) reaction is among the most popular catalytic reactions for the production of syngas (H2/CO) with a H2:CO ratio favorable for the Fischer-Tropsch reaction; this makes the DRM reaction important from an industrial perspective, as unlimited possibilities for production of valuable products are presented by the FT process. At the same time, simultaneously tackling two major contributors to the greenhouse effect (CH4 and CO2) is an additional contribution of the DRM reaction. The main players in the DRM arena-Ni-supported catalysts-suffer from both coking and sintering, while the activation of the two reactants (CO2 and CH4) through different approaches merits further exploration, opening new pathways for innovation. In this review, different families of materials are explored and discussed, ranging from metal-supported catalysts, to layered materials, to organic frameworks. DRM catalyst design criteria-such as support basicity and surface area, bimetallic active sites and promoters, and metal-support interaction-are all discussed. To evaluate the reactivity of the surface and understand the energetics of the process, density-functional theory calculations are used as a unique tool.

Keywords: DFT; catalysts; ceria; dry reforming of methane.

Publication types

  • Review

Grants and funding

This research was funded by Khalifa University under the grants RC2-2018-024, and CIRA2020-077 and by the Abu Dhabi Department of Education and Knowledge through the grant ARE2017-258.