Study of Material Color Influences on Mechanical Characteristics of Fused Deposition Modeling Parts

Materials (Basel). 2022 Oct 10;15(19):7039. doi: 10.3390/ma15197039.

Abstract

The objective of the present work is to evaluate the influence of material color on mechanical properties of fused deposition modeling (FDM) parts. The performance of the products is evaluated by testing eight different colors of acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) material in terms of tensile strength, compressive strength, and flexural strength. The analysis of data shows a significant difference in mechanical characteristics of prints depending on filament color. For different colors, these three strengths almost follow the same rising and falling tendency. In order to explore the relationship between mechanical strengths and filament colors, the color-mixing theory and the least-squares method are adopted to fit the best ratio coefficients of different color combinations. Results are presented showing that the strength value (e.g., tensile) of the mixed color can be evaluated through that of primary colors by fitting the other strength (e.g., compressive or flexural). It is shown that the predicted value is always no more than 7% error compared with the actual strength, in spite of two-color or three-color mixtures. An additional confirmation test with seven colored PLA filaments from different suppliers was conducted to focus on the extensibility. The outcomes show the maximum fitting errors of strengths for mixed colors in all cases are within 5%, proving the effectiveness and applicability of this predicted approach. This study can bring a detailed analysis that enables better estimation of the function of material color and contributes to improving the property of FDM printed products for consumers by choosing the suitable filament color.

Keywords: ABS; PLA; color; fused deposition modeling (FDM); mechanical strengths.

Grants and funding

This research received no external funding.