Investigation of the Surface Treatment Process of AISI 304 Stainless Steel by Centrifugal Disc Finishing with the Use of an Active Workpiece Holder

Materials (Basel). 2022 Sep 29;15(19):6762. doi: 10.3390/ma15196762.

Abstract

This article presents the results of experimental studies of the centrifugal disc finishing (CDF) process of 304 steel elements with the use of an active workpieces holder, that allows workpieces for additional rotational and oscillation movements. The main aim of the research was to evaluate the mechanism of formation of the surface texture and to assess the intensity and effectiveness of the machining process. It is shown that additional movements of the workpiece significantly affect the formation of the machining traces generated by the elementary phenomena of micro-cutting, scratching, grooving, etc. As a result, these combined and complex interactions lead to the formation of the surface topography of the workpieces. Based on the research results, it can be concluded that the use of an active workpiece holder in the CDF process allows changes in the intensity of the machining process. Moreover, the active holder allows modification of the surface smoothing process. The intensity of the treatment process depends primarily on the location of the workpiece holder in the appropriate energy area of the work charge. On the other hand, the efficiency of the workpiece surface smoothing depends on the parameters of the oscillation and rotational movements of the workpiece mounted in the active holder. The presented research results show that the use of an active holder, enabling rotation and oscillation of the workpiece, may lead to a more effective use of smoothing processes in CDF machines. The analysis of the results shows that the values of the Sdr and Sa parameters are more strongly dependent on the vibration frequency and increase with its increasing frequency. This is undoubtedly the result of the concentration of smoothing marks on the smoothed surface. However, with regard to the rotational speed of the object, this relationship is non-monotonic, and its greatest influence occurs at its intermediate values. It follows that this activity does not have a significant impact on the generation of the number of smoothing marks and the degree of their concentration. The research methodology proposed in the work allows the initial determination of the dependence of the results of the CDF process on the machining parameters, including the parameters of the active holder. This methodology can also be used for machining materials other than AISI 304 steel.

Keywords: active holder; centrifugal disc finishing; stainless steel; surface topography assessment.

Grants and funding

This research received no external funding.