The Role of Drones in Out-of-Hospital Cardiac Arrest: A Scoping Review

J Clin Med. 2022 Sep 28;11(19):5744. doi: 10.3390/jcm11195744.

Abstract

Drones may be able to deliver automated external defibrillators (AEDs) directly to bystanders of out-of-hospital cardiac arrest (OHCA) events, improving survival outcomes by facilitating early defibrillation. We aimed to provide an overview of the available literature on the role and impact of drones in AED delivery in OHCA. We conducted this scoping review using the PRISMA-ScR and Arksey and O'Malley framework, and systematically searched five bibliographical databases (Medline, EMBASE, Cochrane CENTRAL, PsychInfo and Scopus) from inception until 28 February 2022. After excluding duplicate articles, title/abstract screening followed by full text review was conducted by three independent authors. Data from the included articles were abstracted and analysed, with a focus on potential time savings of drone networks in delivering AEDs in OHCA, and factors that influence its implementation. Out of the 26 included studies, 23 conducted simulations or physical trials to optimise drone network configuration and evaluate time savings from drone delivery of AEDs, compared to the current emergency medical services (EMS), along with 1 prospective trial conducted in Sweden and 2 qualitative studies. Improvements in response times varied across the studies, with greater time savings in rural areas. However, emergency call to AED attachment time was not reduced in the sole prospective study and a South Korean study that accounted for weather and topography. With growing interest in drones and their potential use in AED delivery spurring new research in the field, our included studies demonstrate the potential advantages of unmanned aerial vehicle (UAV) network implementation in controlled environments to deliver AEDs faster than current EMS. However, for these time savings to translate to reduced times to defibrillation and improvement in OHCA outcomes, careful evaluation and addressing of real-world delays, challenges, and barriers to drone use in AED delivery is required.

Keywords: automated external defibrillators; emergency medical services; out-of-hospital cardiac arrest; unmanned aerial devices.

Publication types

  • Review

Grants and funding

This research received no external funding.